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SUMMARY 

Finite element schemes for hyperbolic systems are applied to the St. Venant equations for one-dimensional, 
unsteady, open channel flow. The comparative performances of the characteristic-dissipativffialerkin, Taylor- 
Galerkin and least squares finite element schemes are assessed by means of linear Fourier analysis and solution of 
idealized non-linear wave propagation problems. Of particular interest is the behaviour of these schemes for the 
regressive wave component in both subcritical and supercritical flows. To assess the quality of the basic solution, 
the methods are compared without any additional artificial diffusion or shock-capturing formulations. The 
balanced treatment of both wave components in the characteristic-dissipative-Galerkin method is illustrated. Also, 
the method displays little sensitivity to parameter variations. The Taylor-Galerkin scheme provides good solutions, 
although oscillations due to wave dispersion and minimal diffusion of the regressive wave are displayed. Also, this 
method is somewhat sensitive to the time step increment. The least squares method is considered unsuitable for 
unsteady, open channel flow problems owing to its inability to propagate a regressive wave in a supercritical flow. 

KEY WORDS St. Venant equations Hyperbolic system Characteristic-dissipative-Galerkin Taylor-Galerkin Least 
squares finite element 

NTRODUCTION 

The St. Venant equations governing one-dimensional, unsteady, open channel flow form a hyperbolic 
system with two distinct disturbance propagation velocities. A number of finite element schemes have 
been proposed for these equations and general hyperbolic systems. While much of the research in this 
area is currently directed to the solution of the two-dimensional flow equations, investigation of the 
one-dimensional approximation remains a valid and important interest. For example, flood forecasting 
and flood plain delineation, the design of flood protection works, culverts, spillways and diversion 
canals and the assessment of the impact of dam failure or a sudden ice jam release all require 
knowledge of the water surface elevation, discharge and velocity in an open channel. In addition, from 
a numerical perspective, analytical solutions for idealized one-dimensional problems provide the 
means to compare the performances of various numerical schemes. 

Three finite element schemes specifically designed for hyperbolic systems are investigated in this 
study. The first is the characteristic-dissipative-Galerkin (CDG) method,' an SUPG-based2 scheme in 
which upwind weighted test functions are used to introduce selective dissipation based on the 
characteristic velocities of the propagating disturbances. The second is the Taylor-Galerkin (TG) 
rne th~d,~  an explicit formulation analogous to the familiar Lax-Wendroff finite difference ~ c h e m e . ~  
The third is the least squares (LS) method,536 in which the residual is minimized in terms of least 
squares. 

These three methods are compared by means of linear Fourier analysis and solution of idealized 
wave propagation problems. Of particular interest in these tests was the behaviour of the regressive 
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component in both subcritical and supercritical flows. To provide a complete comparison of these finite 
element schemes, their ability to handle a mild shock propagation problem is also presented. The 
methods are compared without any additional artificial diffusion or shock-capturing formulations. 
Such devices are necessary in practice, but it is desirable to minimize their use by improving the 
quality of the basic solution.’ 

ST. VENANT EQUATIONS 

The system of equations that describes one-dimensional, unsteady flow in an open channel represents 
conservation of mass and momentum. Neglecting lateral (tributary) inflow, for a prismatic, wide 
rectangular channel they may be written as 

where 

A is the flow area, Q is the discharge, U is the cross-sectionally averaged longitudinal velocity (U = 

Q/A) ,  H i s  the flow depth (H = A/B, where B is the channel width), So is the longitudinal bed slope, S, 
is the longitudinal friction slope, g is the acceleration due to gravity and x and t are the longinitudinal 
distance and temporal co-ordinates respectively. Since this study focuses on the treatment of the 
dynamic terms, horizontal frictionless flow (cf) = (0)) is considered. This also facilitates the 
determination of analytical solutions to non-linear problems, providing for a rigorous comparison of 
the numerical schemes. 

A non-conservation form of this system may also be considered, namely 

where 

in which c = , / ( g H )  represents the propagation velocity of a small disturbance in still water. 

FINITE ELEMENT METHODS 

With the exception of the LS scheme, the finite element equations were derived using the Galerkin 
weighted residual method. The simplest implementation, commonly known as the Bubnov-Galerkin 
(BG) method, is analogous to centred finite differences. In the BG method the test hc t ions  are simply 
set equal to the basis hct ions.  In open channel flow applications the Bubnov-Galerkin formulation 
has been shown to be useful for modelling relatively flat waves, but it performs poorly in the vicinity of 
steep gradients in the solution.* Instabilities result and the solution deteriorates rapidly. Nevertheless, 
the BG method (formulated with a Crank-Nicolson time discretization) is included for comparison. 
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Implementation 

All four of the finite element schemes presented were fundamentally based on the conservation form 
of the equations. This implementation has two advantages. First, integration by parts over each element 
generates flux terms which are cancelled out upon assembly and enforcement of conservation of mass 
and momentum across element boundaries.'.' At the upstream and downstream ends of the channel 
these flux terms represent natural boundary conditions. Second, a conservation formulation involves a 
linear form of the continuity equation, leaving only one non-linear equation in the system. 

Upwinding terms in the CDG, TG and LS schemes were based on the non-conservation, non- 
symmetric form represented by the system in (3). A Newton-Raphson iteration was used to solve the 
resulting non-linear systems. The solution was considered to have converged when the magnitude of 
the correction vector divided by the magnitude of the solution vector was less than 

Linear elements were used in the formulation of all four schemes. To quantify the flux terms in the 
momentum equation for the numerical integration, values of A and Q were first evaluated at each 
integration point by interpolation of the nodal values and then used to calculate the flux terms as 
defined in (2). 

Characteristic-dissipative- Galerkin 

The characteristicxIissipative-Galerkin (CDG) scheme'.' was derived following Hughes and co- 
workers.2*'0.'' The significant difference lies in the form of the equations modelled, since Hughes et 
al. l o  formulate the scheme on symmetric (non-conservation) hyperbolic systems. A symmetric system 
equivalent to (3) can be formed, e.g. 

a 2c u c  a 2c -{ at u } + [c u]z{ u }  ={O) 
However, since numerical tests of formulations based on ( 5 )  did not reveal any noticeable advantage, 
the non-symmetric conservation form was retained. The only difference is that the inverse of the 
eigenvector matrix is required in the eigenvector expansion of the non-symmetric convection matrix. 

Adaptation of this concept to the problem of open channel flow is defined by 

-1/2c u + c  0 
= [MIIAIIMl-' = [(U + C)/2C 1 /2c - (U - c)/2c ] [ 0 u - c ] [-(u-c) -(U +c)  '1 1 . (6)  

Implementation is equivalent to a Bubnov-Galerkin formulation of the extended system 

m+W-w--[W]-- Ax a (-+ a{4} [A]-) a{4}  = (0)' 
at  ax  2 ax at  ax 

- \  Y d 

original system upwinding terms 

(7) 

where 
2 - u2 

u + c  I [A1 - 1 [W] =-=- 
I[AlI 2c 

in which o is an 'upwinding coefficient' while the matrix [W] controls the distribution of the 
upwinding. It was found that o = 0.5 optimized the phase accuracy in the linear case.'.' At o = 0.25 
the amplitude accuracy improved slightly while the reduction in phase accuracy was only marginal.'99 
Because of the limited effect of varying w in the linear case, a constant value of w = 0-5 was used for 
this investigation. A Crank-Nicolson time discretization was used for this scheme. 
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The CDG scheme may also be considered a refinement to the dissipative-Galerkin scheme 
originally introduced by Katopodes' for solving these one-dimensional, open channel flow equations. 
This refinement accounts for the characteristic velocities of both progressive and regressive 
disturbances in the determination of the upwinding matrix. These characteristic velocities also have 
important physical significance to the problem of unsteady, open channel flow. 

Taylor-Galerkin 

The Taylor-Galerkin (TG) scheme,3*' 2-1 also known as the characteristic-Galerkin scheme," is an 
explicit formulation in which the unknown variables are written in terms of a Taylor series expansion in 
time. The governing equations are then used to devise a time-independent formulation. This 
exploitation of the time series is used to introduce numerical diffusion.'* The implementation of the 
Taylor-Galerkin scheme is equivalent to a Bubnov-Galerkin formulation of the equation 

In the Taylor-Galerkin scheme the size of the diffusion term is controlled by the time step 
increment. Although this scheme is termed explicit, the consistent3 formulation used here reduces the 
stability limit of the Taylor-Galerkin method, such that the Courant number C is'2*14-16 

I U f c l A t  1 < - z 0.577, 
Ax - J 3  

C =  

and requires the solution of a system of equations at each time step. However, unlike any of the other 
methods considered, this system is linear. 

Least squares 

The least squares (LS) m e t h ~ d ~ . ~  is an implicit scheme in which the residual is minimized in terms 
of least squares rather than by the Galerkin method described above. Implementation is equivalent to a 
Bubnov-Galerkin formulation of the system 

( ? $ ! + T ) - A t Q -  - [A]%) -At 0; [[A]'(!p+ dX = {0}, 

where 8 defines the level of implicitness (8 = 0-5, representing a semi-implicit formulation, was 
actually used for all tests). Here, as in the Taylor-Galerkin method, the amount of numerical diffusion 
added depends on At. Another similarity with the Taylor-Galerkin method is the necessity to discretize 
in time first, then in space. 

FOURIER STABILITY ANALYSIS 

A linear stability analysis was used to examine the amplification and phase characteristics of the 
various numerical methods investigated in this study for the linearized equations. The type of analysis 
used here may be described as a Fourier (or von Neumann) type." Such an analysis is a valuable tool 
not only as a basis for the comparison of various numerical schemes but also to determine the 
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appropriate discretization of a problem for a particular method. Fourier analyses are available for all 
three numerical  scheme^,"^'^^ though not for this system in the case of the LS method. 

Equation (8) may be linearized and non-dimensionalized to obtain 

where 4., t. and x. are defined by 

tuo { & * } =  { H / H o  }. X 
x* = - t * = - - ,  

L '  L UH/(UOHO) 
Here L represents a length scale and H, and Uo are the uniform flow depth and velocity respectively. Fo 
is the Froude number of the uniform flow, defined by 

Each Fourier component of the solution may assume the form17 

{4,)"+' = {@}"+lexp(ikr,), 

where represents the solution amplitude at time n + 1 and 

in which k is the component wave number, ( is the wavelength and N is the number of discretization 
intervals per wavelength. The complex 'amplification matrix' [GI, defined such that 

{@}"+I = [GI{@}", (17)  
describes both the amplification and phase characteristics of the numerical method. The two complex 
eigenvalues of this matrix, corresponding to the regressive and progressive waves, can be written in the 
form 

(18) reiQ 

Here r represents the magnification factor or the 'algorithmic damping' coefficient and 0 indicates the 
numerical phase shift, i.e. 

0 = kAx,, (19) 
where Ax. is the distance moved by the wave. The 'relative celerity' of the progressive and regressive 
waves is defined by 

relative celerity = - 0 = 0 / (F%(Ukc)At*)  
@anal. Ax* 

Figures 1 and 2 present the results of the linear stability analyses for all four finite element methods 
for Courant numbers 

1 + l/F,)A& 
Ax* 

c = (  
of 0.25 and 0.5 respectively. The amplitude and phase accuracies are presented for both progressive 
waves (independent of Froude number) and regressive waves (Fo = 0.5 and 2.0) in each case. 

Ideally, it is desirable that a numerical scheme display the ability to provide selective damping of 
high-frequency disturbances while exhibiting little or no algorithmic damping of longer waves of 
physical importance. Given that some of the most interesting disturbances generated in open channel 
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Figure 1. Comparison of amplitude and distance errors of BG, CDG, TG and LS methods for a Courant number of 0.25 

flows occur over very short distances (i.e. shocks such as bores and surges), a steep increase in 
algorithmic damping from a very low value at a spatial resolution of 2-0 to a value of 1.0 at all higher 
spatial resolutions is extremely desirable. The Bubnov-Galerkin formulation, of course, is entirely 
non-dissipative (algorithmic damping equal to 1 .O at all values of spatial resolution). 

Figure 1 (Courant number 0-25) shows that all three upwinding schemes (CDG, TG and LS) provide 
selective damping of progressive disturbances. The TG and LS schemes display very little damping of 
regressive waves at this Courant number (note that the TG and LS plots coincide in this graph). CDG is 
more dissipative of progressive waves and much more dissipative of regressive waves. The phase 
accuracy of CDG is also superior to that of the other three methods for regressive disturbances, while 
TG and CDG are comparable and marginally superior to LS and BG in phase accuracy for progressive 
waves. 

As Figure 2 illustrates, when the Courant number is increased to 0.5, all three upwinding methods 
illustrate greater damping of progressive disturbances. For regressive waves the TG and LS methods 
are slightly more dissipative of the shorter wavelengths than when the Courant number is 0-25, while 
the performance of the CDG scheme is again superior. An examination of the phase accuracy 
illustrates that the CDG and LS schemes are clearly superior to TG for progressive waves, while TG 
and CDG are comparable and marginally superior to LS in phase accuracy for regressive waves. A 
comparison between Figures 1 and 2 illustrates that although TG clearly performs better at C = 0-25 
and LS at C = 0.50, CDG is relatively insensitive to Courant number, performing well over this range. 
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Figure 2. Comparison of amplitude and distance errors of BG, CDG, TG and LS methods for a Courant number of 0.50 

NUMERICAL TESTS 

Disturbance propagation 

To compare these finite element methods for the full non-linear problem, three test problems 
were examined, each involving the propagation of both a progressive and a regressive 
disturbance: 

(1) with ambient fluid stationary (Froude number 0.0) 
(2) a subcritical flow (Froude number 0.5) 
(3) a supercritical flow (Froude number 2.0). 

In all three cases the geometry consisted of a unit-width section of a horizontal, frictionless 
channel; 49 linear elements each 10 m long were used, for a total of 50 nodes. The boundary 
conditions for the subcritical flow runs were given as discharge at the upstream and downstream ends, 
while for the supercritical flow both discharge and area were specified at the upstream end. 
To facilitate the computation of exact solutions for these nonlinear problems, the initial conditions 
were set as two identical disturbances, one progressive and one regressive. The initial depth H (m) 
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was set to 
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0 5 x 5 155, 
165 5 x 5 215, 
225 5 x 5 245, 

H = 3.5, 
H = 3.5 + 0 . 0 2 ( ~  - 155), 

H = 4.7 - 0 . 0 4 ( ~  - 215), 

245 5 x 5 255, H = 3.5, (22)  
265 5 x 5 285, 
285 5 x 5 345, 
355 5 x 5 495, 

H = 3.5 + 0 . 0 4 ( ~  - 255), 
H = 3.5 - 0 . 0 2 ( ~  - 285),  
H = 3.5. 

The initial discharge per unit width, UH (m3 s-' m-I), was specified based upon the Froude number 
selected for the test, calculated to make each wave propagate entirely in a single direction: 

(23 1 ('Hlprogressive = H [ F J ( g H o )  + 2 J ( g H )  - 2J(gHo)I ,  

('Hlregressive = H[FJ(gHO) - 2 J W )  + 2J(gHo)I ,  

where Ho is the depth of the undisturbed flow (3-5 m). All four schemes were run at a Courant number 
of 0.25, based on the propagation velocity of the progressive wave. 

Figures 3-5 illustrate the initial conditions (I.C.), exact solution and numerical results for the three 
tests (F = 0.0, 0.5 and 2.0) at t = 17-34, 12-95 and 7.70 s respectively. For the first two (subcritical) 
tests the progressive disturbance had travelled exactly 150 m. For the supercritical flow test the 
progressive disturbance had travelled 156.8 m. Note that in the supercritical test both the regressive 
and progressive waves moved with the flow. 

In the first test (F = 0-0) the BG scheme increased the wave peaks by 1.02%. For the second and 
third tests (F = 0.5 and 2.0) the BG scheme reduced the progressive peaks by 1.43% and 3.04% 
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Figure 3. Non-linear propagation of progressive and regressive disturbances (F = 0.0) 
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Figure 5 .  Non-linear propagation of progressive and regressive disturbances (F = 2.0) 
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respectively and the regressive peaks were reduced by 1.19% and 1 -67% respectively. As predicted 
by the linear stability analysis, these errors in peak magnitude were not due to algorithmic damping 
or amplification but rather wave dispersion as high-frequency components were propagated too slowly. 
This can be seen in the figures, where trailing disturbances were accumulating behind the 
waves. 

The TG scheme produced peaks 1.96% below the exact solution in the F = 0.0 test. For F = 0.5 
and 2.0 the progressive peaks were underestimated by 1.85% and 2.58% respectively and the 
regressive peaks by 1.63% and 1.61% respectively. As predicted by the linear stability analysis, the 
diminishment of the peak was due to both algorithmic damping and wave dispersion as high-fkequency 
components were propagated too slowly. Algorithmic damping would be expected to be small for 
regressive waves (where the linear stability analysis displayed little diffusion) and this is seen in the 
figures as well, where the predicted regressive wave peaks were larger than the corresponding 
progressive wave peaks for F = 0.5 and 2-0. 

The dissipative nature of the CDG scheme was clearly evident in the results for all three tests. With 
F = 0.0 the computed peaks were 6.32% below the exact solution. At F = 0.5 the progressive and 
regressive wave peaks were 6.42% and 4.37% below the exact solution respectively and at F = 2.0 
they were 3.44% and 2.24% below respectively. The solutions were smoother than those for the other 
three methods, with very small undershoots. As expected from the linear stability analysis, the 
diminishment of the peak was mainly due to algorithmic damping. It is interesting to note the improved 
performance of this method in terms of amplitude accuracy with increasing Froude number, while both 
BG and TG exhibited the reverse trend. 

The results for the LS scheme were between those of TG and CDG. From the linear stability analysis 
it was seen that the algorithmic damping expected would be very much like that expected for the TG 
scheme. However, in terms of the phase accuracy for progressive waves the linear stability analysis 
predicted that LS would be inferior to TG. As noted in the solution, the LS method illustrated both 
wave diffusion (though not to the extent of CDG) and wave dispersion, as seen in the oscillations 
(though not to the extent of BG or TG), particularly following the regressive wave. At F = 0.0 the 
computed peaks were 6.08% below the exact solution. For F = 0.5 the progressive and regressive 
wave peaks were 4.69% and 3.36% below the exact solution respectively. As Figure 5 shows, although 
this method produced stable results for the progressive wave in the supercritical test, oscillations in the 
regressive wave destroyed the solution. 

The ability of the three formulations-conservation (non-symmetric), non-conservation (non- 
symmetric) and symmetric (non-conservationFto conserve mass and momentum was examined using 
the CDG scheme on these wave propagation problems.’ The wave propagation tests (for Froude 
numbers of 0-0, 0.5 and 2.0) were run for 60 time steps at a Courant number of 0.5. These tests were 
then repeated using only one wave to reveal any possible cancelling of errors. All three formulations 
were observed to conserve both mass and momentum to at least six significant figures for these tests. 

Dam break analysis 

Although the propagation of simple disturbances provides valuable insight to the comparative 
behaviours of these four FEM schemes, practical applications dictate a need for the ability to propagate 
shocks accurately as well. To examine the comparative abilities of these methods, a classic dam break 
test was employed. The test problem, reproduced from Reference 18, simulated the instantaneous 
failure of a dam in a horizontal, fhctionless channel. In this case the channel geometry consisted of a 
unit-width section; 80 linear elements each of length 25 m were used in the analysis, for a total of 8 1 
nodes. The dam itself was approximated over a single element 25 m long. The discharge was initially 
set to zero at all nodes, while through the upstream half of the domain the initial flow depth was set to 
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10 m. For the downstream half the flow depth was set to 5 m. The boundary conditions provided at 
both ends specified a discharge of zero. 

Figure 6 illustrates the initial depth profile (I.C.), exact solution and numerical results for this test. 
All schemes were run at a time step increment of 0.625 s corresponding to a Courant number of 0.23 
(based on the propagation velocity of the progressive wave). As in the original test, results are 
presented after 60 s. 

Severe oscillations were observed in the BG solution, particularly trailing the progressive shock. For 
the TG scheme, although the surge was distributed over just two elements, localized oscillations just 
upstream and downstream of the jump were observed. With the CDG scheme the shock was distributed 
over two elements as in the TG scheme, though leading and trailing disturbances were noticeably 
smaller. Again the performance of the LS scheme was between those of TG and CDG. For the receding 
wave the BG solution exhibited small oscillations. Of the three upwinding schemes, the TG solution 
was slightly better than the CDG and LS solutions for this regressive disturbance. 

This was a mild shock problem, with the ratio of progressive disturbance height to undisturbed flow 
depth only 0.45. Additional tests were performed for a more severe (supercritical) dam break problem 
in which this ratio was 5-20. The CDG method produced results comparable with those for the mild 
shock problem for C = 0-26. TG was also successhl in obtaining a comparable quality solution, but 
only when the Courant number was reduced to 0.13. The LS method was also found to be unstable at 
C = 0.26. 

The ability of the three formulations-+onservation (non-symmetric), non-conservation (non- 
symmetric) and symmetric (non-conservationFto conserve mass and momentum was examined using 
the CDG scheme for these dam break problems as well9 and the results are summarized in Table I. The 
conservation formulation was found to conserve both mass and momentum to at least six significant 
figures. The non-conservation formulation was able to conserve mass to six significant figures as well, 
but not momentum. This was particularly true for the supercritical test, where a momentum error in 
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excess of 2% was noted after 96 time steps. The symmetric formulation performed poorly in this test, 
with errors in both mass and momentum conservation. Again results were worse for the supercritical 
problem, where errors of the order of 1% and 10% for mass and momentum respectively were 
observed. 

Other numerical tests 

These finite element schemes have also been compared in a number of other tests? including steady 
flow tests involving hydraulic jumps and transitions from mild to steep channels and unsteady tests 
involving the propagation of waves through hydraulic jumps. The comparative behaviours displayed by 
these finite element schemes for the numerical tests presented here are typical of their performance on 
these additional tests. 

CONCLUSIONS 

In the practical application of any numerical method to unsteady, open channel flow problems, 
situations requiring the addition of artificial diffusion are going to arise. Therefore, in judging the 
comparative performances of the characteristic4issipative-Galerkin (CDG), Taylor-Galerkin (TG) 
and least squares (LS) finite element schemes, the type and amount of artificial diffusion required will 
have important implications for the final solution quality. 

Because of the balanced treatment of both wave components, the artificial diffusion required for the 
CDG method will only be small and localized. In some cases the amount of diffusion introduced by the 
CDG scheme may be more than necessary. This method displayed little sensitivity to variation in the 
time step increment. 

The type and amount of artificial diffusion needed for the TG scheme will be relatively more 
important to the final solution. Although good solutions can be obtained for relatively small 
computational cost, this method is somewhat sensitive to the time step increment. 

The LS method is considered unsuitable for unsteady, open channel flow problems owing to its 
inability to propagate a regressive wave in a supercritical flow. 
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APPENDIX: NOMENCLATURE 

A 
A 
B 

C 
F 
F o  
f 

C 

g 
G 
H 

channel cross-sectional area perpendicular to the flow 
convection matrix 
channel width 
celerity 
Courant number 
flux vector 
uniform flow Froude number 
source term 
acceleration due to gravity 
amplification factor in stability analysis 
flow depth 
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Ho 
k 
L 
N 

r 
Q 
Sf 
s o  

t 

t .  
U 
uo 
X 

x. 
W 

uniform flow depth 
wave number 
length scale 
number of nodes per wavelength 
discharge 
algorithmic damping 
friction slope 
bed slope 
time co-ordinate 
non-dimensional time co-ordinate 
cross-sectionally averaged longitudinal velocity 
uniform flow velocity 
longitudinal co-ordinate 
non-dimensional longitudinal co-ordinate 
upwinding matrix 

Greek letters 
( disturbance wavelength 
t9 implicitness 
0 phase shift angle 
p, characteristic velocities 
A eigenvalue matrix 
4 vector of unknowns 
4. non-dimensional solution vector 
w upwinding coefficient 
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